Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex.
نویسندگان
چکیده
Tuberous sclerosis complex (TSC) is a multiorgan genetic disease in which brain involvement causes epilepsy, intellectual disability, and autism. The hallmark pathological finding in TSC is the cerebral cortical tuber and its unique constituent, giant cells. However, an animal model that replicates giant cells has not yet been described. Here, we report that mosaic induction of Tsc1 loss in neural progenitor cells in Tsc1(cc) Nestin-rtTA(+) TetOp-cre(+) embryos by doxycycline leads to multiple neurological symptoms, including severe epilepsy and premature death. Strikingly, Tsc1-null neural progenitor cells develop into highly enlarged giant cells with enlarged vacuoles. We found that the vacuolated giant cells had multiple signs of organelle dysfunction, including markedly increased mitochondria, aberrant lysosomes, and elevated cellular stress. We found similar vacuolated giant cells in human tuber specimens. Postnatal rapamycin treatment completely reversed these phenotypes and rescued the mutants from epilepsy and premature death, despite prenatal onset of Tsc1 loss and mTOR complex 1 activation in the developing brain. This TSC brain model provides insights into the pathogenesis and organelle dysfunction of giant cells, as well as epilepsy control in patients with TSC.
منابع مشابه
Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle.
Subependymal nodules (SENs) and subependymal giant cell astrocytomas (SEGAs) are common brain lesions found in patients with tuberous sclerosis complex (TSC). These brain lesions present a mixed glioneuronal phenotype and have been hypothesized to originate from neural stem cells. However, this hypothesis has not been tested empirically. Here, we report that loss of Tsc1 in mouse subventricular...
متن کاملTherapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex.
Epileptic seizures, particularly infantile spasms, are often seen in infants with tuberous sclerosis complex (TSC) soon after birth. It is feared that there are long-term developmental and cognitive consequences from ongoing, frequent epilepsy. In addition, the hallmark brain pathology of TSC, cortical tubers and giant cells are fully developed at late gestational ages. These observations have ...
متن کاملTiming of mTOR activation affects tuberous sclerosis complex neuropathology in mouse models
Tuberous sclerosis complex (TSC) is a dominantly inherited disease with high penetrance and morbidity, and is caused by mutations in either of two genes, TSC1 or TSC2. Most affected individuals display severe neurological manifestations - such as intractable epilepsy, mental retardation and autism - that are intimately associated with peculiar CNS lesions known as cortical tubers (CTs). The exi...
متن کاملA novel mouse model of tuberous sclerosis complex (TSC): eye-specific Tsc1-ablation disrupts visual-pathway development
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that is best characterised by neurodevelopmental deficits and the presence of benign tumours (called hamartomas) in affected organs. This multi-organ disorder results from inactivating point mutations in either the TSC1 or the TSC2 genes and consequent activation of the canonical mammalian target of rapamycin complex 1 signallin...
متن کاملPAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex
Tuberous sclerosis complex (TSC) is caused by inactivating mutations in either TSC1 or TSC2 and is characterized by uncontrolled mTORC1 activation. Drugs that reduce mTOR activity are only partially successful in the treatment of TSC, suggesting that mTOR-independent pathways play a role in disease development. Here, kinome profiles of wild-type and Tsc2(-/-) mouse embryonic fibroblasts (MEFs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 45 شماره
صفحات -
تاریخ انتشار 2011